

Escuela de Doctorado y Estudios de Posgrado

Máster Universitario en Ingeniería Industrial

GUÍA DOCENTE DE LA ASIGNATURA (ESCENARIO 0):

Programación de Robots (2021 - 2022)

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 1 de 10

1. Datos descriptivos de la asignatura

Asignatura: Programación de Robots

Código: 335662494

- Centro: Escuela de Doctorado y Estudios de Postgrado
- Lugar de impartición: Escuela Superior de Ingeniería y Tecnología. Sección de Ingeniería Industrial
- Titulación: Máster Universitario en Ingeniería Industrial
- Plan de Estudios: 2017 (Publicado en 2017-07-31)
- Rama de conocimiento: Ingeniería y Arquitectura
- Itinerario / Intensificación:
- Departamento/s:

Ingeniería Informática y de Sistemas

- Área/s de conocimiento:

Arquitectura y Tecnología de Computadores Ingeniería de Sistemas y Automática

- Curso: 2
- Carácter: Optativa
- Duración: Segundo cuatrimestre
- Créditos ECTS: 3,0
- Modalidad de impartición: Presencial
- Horario: Enlace al horario
- Dirección web de la asignatura: http://www.campusvirtual.ull.es
- Idioma: Castellano e Inglés (Decreto 168/2008: un 5% será impartido en Inglés)

2. Requisitos para cursar la asignatura

No se han establecido

3. Profesorado que imparte la asignatura

Profesor/a Coordinador/a: JONAY TOMAS TOLEDO CARRILLO

- Grupo: Único

General

- Nombre: **JONAY TOMAS**- Apellido: **TOLEDO CARRILLO**

- Departamento: Ingeniería Informática y de Sistemas

- Área de conocimiento: Ingeniería de Sistemas y Automática

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 2 de 10

Contacto

- Teléfono 1: **922316170** - Teléfono 2: **922318287**

- Correo electrónico: jttoledo@ull.es

- Correo alternativo:

- Web: http://www.campusvirtual.ull.es

Tutorías primer cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
Todo el cuatrimestre		Martes	10:30	12:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028
Todo el cuatrimestre		Miércoles	10:30	12:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028
Todo el cuatrimestre		Jueves	16:30	18:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028

Observaciones:

Tutorías segundo cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
Todo el cuatrimestre		Martes	10:30	12:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028
Todo el cuatrimestre		Miércoles	10:30	12:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 3 de 10

Todo el cuatrimestre	Jueves	16:30	18:30	Escuela Superior de Ingeniería y Tecnología - Módulo A - AN.4A ESIT	P3.028
Observaciones:					

Profesor/a: DAVID ABREU RODRÍGUEZ

- Grupo:

General

- Nombre: **DAVID**

- Apellido: ABREU RODRÍGUEZ

- Departamento: Ingeniería Informática y de Sistemas

- Área de conocimiento: Ingeniería de Sistemas y Automática

Contacto

Desde

- Teléfono 1: -
- Teléfono 2: -
- Correo electrónico: dabreuro@ull.es
- Correo alternativo: dabreuro@ull.edu.es

Hasta

Día

 $\hbox{- Web: $https://portal ciencia.ull.es/investigadores/82506/detalle}\\$

Tutorías primer cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
		Martes	15:00	18:00	Escuela Superior de Ingeniería y Tecnología - AN.4A ESIT	P2.034
		Miércoles	15:00	18:00	Escuela Superior de Ingeniería y Tecnología - AN.4A ESIT	P2.034
Observacione	es: Calendario pa	ra coger cita: https://	/cutt.ly/cf8Sibj	·	•	·
Tutorías seg	jundo cuatrimes	tre:				

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 4 de 10

Hora inicial

Hora final

Localización

Despacho

Lunes	11:30	14:30	Escuela Superior de Ingeniería y Tecnología - AN.4A ESIT	P2.034
Martes	09:00	12:00	Escuela Superior de Ingeniería y Tecnología - AN.4A ESIT	P2.034

4. Contextualización de la asignatura en el plan de estudio

Bloque formativo al que pertenece la asignatura: Automática y Robótica

Perfil profesional: Ingeniería Industrial

5. Competencias

Específicas: Instalaciones, plantas y construcciones complementarias

IP5 - Conocimientos sobre métodos y técnicas del transporte y manutención industrial.

Específicas: Tecnologías industriales

- TI6 Conocimientos y capacidades que permitan comprender, analizar, explotar y gestionar las distintas fuentes de energía.
- TI8 Capacidad para diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.

Generales

- CG6 Gestionar técnica y económicamente proyectos, instalaciones, plantas, empresas y centros tecnológicos.
- **CG12** Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Industrial.

Básicas

- **CB7** Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
- **CB10** Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 5 de 10

6. Contenidos de la asignatura

Contenidos teóricos y prácticos de la asignatura

- Profesor/a: Jonay Tomas Toledo Carrillo, David Abreu
- Tema 1: Introducción a la programación de robots, Herramientas de programación y soluciones
- Tema 2: Sistemas operativos específicos: tipologías según requerimientos. La problemática de los sistemas de tiempo real.
- Tema 3: Técnicas de programación avanzada para sistemas con restricciones derivadas del diseño: sistemas distribuidos, sistemas empotrados y sistemas de tiempo real.
- Tema 4: Prácticas con robots manipuladores y móviles.

Actividades a desarrollar en otro idioma

En cumplimiento de la normativa autonómica el 5% de las actividades docentes se impartirá en Inglés.

Se utilizará documentación en inglés, cuyo uso será necesario para responder a preguntas y resolver ejercicios, de manera escrita, que formen parte de la evaluación de la asignatura. Toda la documentacion de los sistemas utilizados esta realizada en inglés y se les pedirá a los estudiantes la documentación del código en Inglés.

7. Metodología y volumen de trabajo del estudiante

Descripción

La asignatura consta de clases teóricas y prácticas. En las primeras se impartirá los conceptos principales de la asignatura y serán reforzadas por las sesiones de tutoría correspondientes. El alumno deberá dedicar parte de sus horas de trabajo a leer los apuntes, hacer las actividades prácticas que se puedan proponer y a preparar los exámenes. Las clases prácticas se dividirán en sesiones en el aula de informática, para desarrollar una serie de trabajos o proyectos aplicados, y en clases de problemas donde se ilustrarán aquellos contenidos de la teoría que sean susceptibles de ello.

Actividades formativas en créditos ECTS, su metodología de enseñanza-aprendizaje y su relación con las competencias que debe adquirir el estudiante

Actividades formativas	Horas presenciales	Horas de trabajo autónomo	Total horas	Relación con competencias
Clases teóricas	8,00	0,00	8,0	[CB10], [CB7], [TI8], [TI6], [IP5]
Clases prácticas (aula / sala de demostraciones / prácticas laboratorio)	18,00	0,00	18,0	[CB10], [CB7], [CG6], [TI8]
Realización de trabajos (individual/grupal)	0,00	15,00	15,0	[CB10], [CB7], [CG12], [CG6], [TI8], [TI6], [IP5]

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 6 de 10

Estudio/preparación de clases teóricas	0,00	5,00	5,0	[CB10], [CB7], [TI8], [TI6], [IP5]
Estudio/preparación de clases prácticas	0,00	20,00	20,0	[CB10], [CB7], [CG6], [TI8]
Preparación de exámenes	0,00	5,00	5,0	[CB10], [CB7], [CG6], [TI8]
Asistencia a tutorías	4,00	0,00	4,0	[CB10], [CB7], [CG6], [TI8]
Total horas	30,00	45,00	75,00	
'		Total ECTS	3,00	

8. Bibliografía / Recursos

Bibliografía Básica

Jason M. O'Kane, A Gentle Introduction to ROS, 2013, isbn = 978-1492143239, http://www.cse.sc.edu/~jokane/agitr

Bibliografía Complementaria

Aaron Martinez (Author), Enrique Fernández (Author), Learning ROS for Robotics Programming Paperback – September 25, 2013

R. Patrick Goebel, ROS By Example INDIGO - Volume 1, 2015

Otros Recursos

Frameworks de programación de robots: ROS homepage: http://www.ros.org/ CARMEN: http://carmen.sourceforge.net/

9. Sistema de evaluación y calificación

Descripción

A continuación, se recogen las consideraciones más relevantes relacionadas con la evaluación de la asignatura, que se rige por el Reglamento de Evaluación y Calificación de la Universidad de La Laguna (BOC de 19 de enero de 2016) o el que la Universidad tenga vigente, además de por lo establecido en la Memoria de Verificación inicial del título o posteriores modificaciones.

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 7 de 10

La evaluación continua de la asignatura será un 60% de la nota final, incluyendo entrega de trabajos e informes. El resto del porcentaje de evaluación 40% será a través de un examen final del desarrollo realizado a lo largo del curso a través de una serie de test en la fecha indicada en la convocatoria.

Aquellos alumnos que no hayan superado la evaluación continua podrán realizar en las diferentes convocatorias un examen final de evaluación de las competencias de la asignatura. El examen consistirá en una parte teórica con un 40% de la nota final, y un examen práctico en el aula de informática donde se desarrollarán parte de los contenidos prácticos con un 60% de la nota final.

Estrategia Evaluativa

Tipo de prueba	Competencias	Criterios	Ponderación
Pruebas objetivas	[CB10], [CB7], [TI8], [IP5]	Evaluacion de competencias adquiridas	40,00 %
Trabajos y proyectos	[CB10], [CB7], [CG12], [CG6], [TI8], [TI6], [IP5]	-	40,00 %
Informes memorias de prácticas	[CB10], [CB7], [CG6], [TI8]	Claridad en los informes Grado de realización de los informes	20,00 %

10. Resultados de Aprendizaje

Al finalizar la asignatura el alumno:

- · Será capaz de analizar y diseñar sistemas informáticos para robótica.
- · Será capaz de programar aplicaciones para robots utilizando herramientas específicas.

11. Cronograma / calendario de la asignatura

Descripción

Se concentrará la parte teórica al principio de la asignatura para despues realizar las prácticas.

	Segundo cuatrimestre							
Semana	Temas	Actividades de enseñanza aprendizaje	Horas de trabajo presencial	Horas de trabajo autónomo	Total			
Semana 1:	Tema 1, Introducción	Clases teóricas 2h	2.00	2.00	4.00			
Semana 2:	Tema 2 Sistemas operativos específicos	Clases teóricas 2h	2.00	2.00	4.00			
Semana 3:	Tema 2 Sistemas operativos específicos	Clases teóricas 2h	2.00	2.00	4.00			

Última modificación: 19-07-2021 Aprobación: 27-07-2021 Página 8 de 10

Semana 4:	Tema 3: Técnicas de programación avanzada	Clases teóricas 2h	2.00	2.00	4.00
Semana 5:	Practicas, Introducción a los Framework de programación de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 6:	Practicas, Introducción a los Framework de programación de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 7:	Practicas, Introducción a los Framework de programación de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 8:	Practicas, Introducción a los Framework de programación de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 9:	Practicas Programación avanzada de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 10:	Tema 3 Seminario, Aplicaciones especificas, tiempo real	Seminarios 2h	2.00	3.00	5.00
Semana 11:	Practicas Programación avanzada de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 12:	Practicas Programación avanzada de robots	Clases Practicas 2h	2.00	3.00	5.00
Semana 13:	Tema 3 Seminario, Aplicaciones sistemas empotrados	Seminario 2h	2.00	3.00	5.00
Semana 14:	Practicas Programación avanzada de robots	Clases Practicas 2h	2.00	3.00	5.00

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 9 de 10

Semana 15:	Practicas Programación avanzada de robots	Clases Practicas 2h	1.00	3.00	4.00
Semana 16 a 18:	Prueba final, Entrega de trabajos	Prueba Final, Entrega de trabajos	1.00	4.00	5.00
		Total	30.00	45.00	75.00

Última modificación: **19-07-2021** Aprobación: **27-07-2021** Página 10 de 10