

Escuela Superior de Ingeniería y Tecnología

Grado en Ingeniería Mecánica

GUÍA DOCENTE DE LA ASIGNATURA (ESCENARIO 1):

Ampliación de Elasticidad y Resistencia de Materiales (2021 - 2022)

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 1 de 13

1. Datos descriptivos de la asignatura

Asignatura: Ampliación de Elasticidad y Resistencia de Materiales

Código: 339403101

- Centro: Escuela Superior de Ingeniería y Tecnología

- Lugar de impartición: Escuela Superior de Ingeniería y Tecnología

- Titulación: Grado en Ingeniería Mecánica

- Plan de Estudios: 2020 (Publicado en 2020-11-24)
- Rama de conocimiento: Ingeniería y Arquitectura

- Itinerario / Intensificación:

- Departamento/s:

Ingeniería Industrial

- Área/s de conocimiento:

Ingeniería Mecánica

- Curso: 3

- Carácter: Obligatoria

- Duración: Primer cuatrimestre

- Créditos ECTS: 9,0

- Modalidad de impartición: Presencial

- Horario: Enlace al horario

- Dirección web de la asignatura: http://www.campusvirtual.ull.es

- Idioma: Castellano e Inglés (0,45 ECTS en Inglés)

2. Requisitos para cursar la asignatura

Haber cursado Elasticidad y Resistencia de Materiales

3. Profesorado que imparte la asignatura

Profesor/a Coordinador/a: VIANA LIDA GUADALUPE SUAREZ

- Grupo: Prácticas

General

- Nombre: VIANA LIDA

Apellido: GUADALUPE SUAREZDepartamento: Ingeniería Industrial

- Área de conocimiento: Ingeniería Mecánica

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 2 de 13

Contacto

- Teléfono 1: 922318303

- Teléfono 2:

- Correo electrónico: vlsuarez@ull.es

- Correo alternativo:

- Web: http://www.campusvirtual.ull.es

Tutorías primer cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
Todo el cuatrimestre		Jueves	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones
Todo el cuatrimestre		Viernes	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones

Observaciones: Debido a circunstancias sobrevenidas el horario y el lugar pueden sufrir cambios eventuales. En el horario previsto también se podrán atender dudas por vía telemática.

Tutorías segundo cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
Todo el cuatrimestre		Jueves	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones
Todo el cuatrimestre		Viernes	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones

Observaciones: Debido a circunstancias sobrevenidas el horario y el lugar pueden sufrir cambios eventuales. En el horario previsto también se podrán atender dudas por vía telemática.

Profesor/a: CARMELO MILITELLO MILITELLO

- Grupo: Teoría

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 3 de 13

General

- Nombre: CARMELO

Apellido: MILITELLO MILITELLO
 Departamento: Ingeniería Industrial
 Área de conocimiento: Ingeniería Mecánica

Contacto

- Teléfono 1: 922318303

- Teléfono 2:

- Correo electrónico: cmilite@ull.es

- Correo alternativo:

- Web: http://www.campusvirtual.ull.es

Tutorías primer cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Despacho
Todo el cuatrimestre		Jueves	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones
Todo el cuatrimestre		Viernes	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones

Observaciones: Debido a circunstancias sobrevenidas el horario puede sufrir cambios eventuales

Tutorías segundo cuatrimestre:

Desde	Hasta	Día	Hora inicial	Hora final	Localización	Deanache
Desde	паѕіа	Dia	nora iniciai	погална	Localización	Despacho
Todo el cuatrimestre		Jueves	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones
Todo el cuatrimestre		Viernes	10:00	13:00	Escuela Superior de Ingeniería y Tecnología - Módulo B - AN.4A ESIT	Sala de Reuniones

Observaciones: Debido a circunstancias sobrevenidas el horario puede sufrir cambios eventuales

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 4 de 13

4. Contextualización de la asignatura en el plan de estudio

Bloque formativo al que pertenece la asignatura: Tecnología Específica: Mecánica

Perfil profesional: Ingeniería Mecánica

5. Competencias

Específicas

24 - Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales.

Generales

T9 - Capacidad de trabajar en un entorno multilingüe y multidisciplinar.

Transversales

- O1 Capacidad de análisis y síntesis.
- O5 Capacidad para aprender y trabajar de forma autónoma.
- O6 Capacidad de resolución de problemas.
- O8 Capacidad para aplicar los conocimientos a la práctica.

Básicas

CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

6. Contenidos de la asignatura

Contenidos teóricos y prácticos de la asignatura

- Profesor: Carmelo Militello
- Temas Teóricos:

Tema 1.

Estado de tensiones y deformaciones en un punto. Equilibrio del estado tensional dentro del cuerpo. Equilibrio del estado tensional en la superficie del cuerpo. Determinación de tensiones en planos de orientación arbitraria. Ejes principales y tensiones principales. Tensión y deformación plana. Estados tensionales límites. Tensión de Von Mises

Tema 2.

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 5 de 13

Verificación de vigas bajo tensión oblicua. Vigas rectangulares y circulares. Diagramas de momentos en dos planos.

Tema 3.

Método matricial de cálculo para estructuras de barras y estructuras de vigas, planas y tridimensionales. Método de la rigidez. Rotación y ensamble de matrices elementales.

Tema 4.

Tubos de paredes gruesas. Ecuaciones fundamentales de equilibrio. Desplazamientos, deformaciones y tensiones. Determinación de las tensiones en tubos compuestos. Interferencia. Discos que giran a gran velocidad.

Tema 5.

Bóvedas axisimétricas por la teoría membranal. Calculo de las tensiones. Cargas hidroestáticas.

Tema 6.

Flexión de placas circulares sometidas a cargas simétricas. Ecuaciones fundamentales de equilibrio. Desplazamientos, deformaciones y tensiones.

Tema 7.

Flexión de cáscaras cilindricas ante cargas axisimétricas.

Profesor: Viana Lida Guadalupe Suárez

Prácticos de Laboratorio (Realizadas con el programa SOLIDWORKS y desarrollo de aplicaciones desarrolladas en OCTAVE, SCILAB o EXCEL):

- Práctica 1. Introducción a la programación de métodos matriciales para la resoluciónde problemas de barras y vigas 2D.
- Práctica 2. Introducción al modelado en SOLIDWORKS de problemas de barras y vigas 2D.
- Práctica 3. Modelado de problemas isoestáticos e hiperestáticos de barras 2D. Solidworks y Excel.
- Práctica 4. Modelado de problemas isoestáticos e hiperestáticos de vigas 2D. Solidworks
- Práctica 5. Modelado de problemas de pórticos planos. Solidworks
- Práctica 6. Modelado de problemas de estructuras 3D . Solidworks

Actividades a desarrollar en otro idioma

Podrán realizarse distintos tipos de actividades, e.g. traducción de un artículo, resolución de problemas con enunciados en inglés, realizar un informe de prácticas. La adquisición de vocabulario propio de la asignatura en Inglés se verificará con una pregunta en el examen final cuyo valor corresponderá a 0.5 puntos (5% de la nota final).

7. Metodología y volumen de trabajo del estudiante

Descripción

En general, la docencia corresponderá a un modelo de prespecialidad adaptada a especiales condiciones sanitarias que imponen el distanciamiento físico establecidas por el Ministerio de Sanidad. En este sentido, la impartición de las clases teóricas y prácticas en el aula, además de impartirse de manera presencial a los distintos grupos a desarrollar cada de estudiantes que, de manera coordinada, puedan asistir a dichas actividades presenciales semana, también se impartirán de

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 6 de 13

manera virtual mediante streaming o clases en línea al resto de estudiantes.

Los desarrollos en pizarra serán reemplazados por desarrollos realizados sobre soporte que permitan la transcripción y difusión digital de los contenidos.

La asignatura utilizará como soporte la plataforma del aula virtual. La documentación gráfica desarrollada exclusivamente para la asignatura estará disponible en dicha plataforma. La publicación de los enunciados de los distintos tipos de problemas y guiones de prácticas así como la gestión de las entregas se podrá realizar a través de dicho entorno. El profesorado de la asignatura utilizará las distintas herramientas del aula virtual para enviar emails, abrir foros, consultas, cuestionarios etc.

Las actividades docentes formativas consistirán en:

- * Clases teóricas (1 ó 2 horas a la semana), donde se explican los aspectos básicos del temario, haciendo uso de los medios audiovisuales disponibles. En estas clases se proporciona un esquema teórico conceptual sobre cada tema y se explicarán y resolverán varios problemas tipo para su mejor compresión. Se propondrán problemas para que el alumnado realice y entregue en clase y se resolverán problemas de examen de las convocatorias pasadas.
- * Clases prácticas en el aula (1 ó 2 horas a la semana), en las que se realizarán ejercicios prácticos sobre los contenidos teóricos explicados. Se propondrán, además, ejercicios complementarios para que el alumnado los resuelva. Todos los ejercicios presentados estarán disponibles en el Aula Virtual de la asignatura. Aquellos ejercicios propuestos que puedan ser simulados para verificar los resultados, estarán indicados.
- *En el aula de informática (2 horas).

Las prácticas se realizarán en el laboratorio computacional. Los problemas propuestos tendrán que calcularse mediante simulaciones computacionales utilizando varios métodos numéricos. Los resultados obtenidos se verificarán con las ecuaciones analíticas vistas en la teoría. Se ampara la realización de las prácticas a través de conexión remota con el aula de informática, o alternativamente con la disposición de licencias locales en los ordenadores de los alumnos.

El alumnado aprenderá a utilizar el programa SolidWorks para realizar las simulaciones estructurales mediante el método de los elementos finitos. Inicialmente, se familiarizará con las herramientas básicas para diseñar gráficamente estructuras reticulares de vigas y barras en el espacio y posteriormente aprenderá a utilizar el módulo de simulación estructural para calcular las tensiones, las deformaciones y los desplazamientos.

El alumnado también tendrá la posibilidad de trabajar con el método matricial implementado computacionalmente en Scilab u Octave para verificar los resultados a través de una aplicación desarrollada por el profesor.

Las primeras semanas, la profesora de prácticas explicará las distintas interfaces gráficas que tiene el programa para construir los modelos en SolidWorks. Inicialmente, se realizarán geometrías sencillas. El alcance de la complejidad de las herramientas gráficas se restringirá al diseño de estructuras de barras y vigas en 2D y 3D. Durante el aprendizaje de las herramientas del programa, el alumnado dispondrá de varios tutoriales desarrollados por la profesora para ir siguiendo paso a paso las instrucciones de algunos diseños tipo. Posteriormente, se enseñará al alumnado a utilizar el módulo de simulación numérica para calcular las tensiones y las deformaciones que sufren las estructuras bajo distintas situaciones de carga. Se analizarán problemas estáticos bajo las acciones de carga puntual y distribuida. El alumnado aprenderá a utilizar las herramientas que le permita realizar el preprocesado y postprocesado de los modelos propuestos. Los guiones de las prácticas y los tutoriales estarán disponibles en el aula virtual. El alumnado deberá de entregar un informe de cada una de las prácticas que realice. Las instrucciones que explican cómo ha de realizarse cada informe estarán publicadas en el aula virtual.

La adecuación de las competencias a las actividades formativas propuestas son las siguientes:

- -Comprensión, desarrollo y realización de las prácticas, [24] [O1] [O8] [T9]
- -Elaboración de informes de prácticas individuales, [O1] [O5]
- -Realización de problemas tipo en clase, [24] [06]

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 7 de 13

- -Realización de problemas aplicados, [24] [06]
- -Desarrollo de problemas aplicados, [24] [O6] [O5]
- -Realización de manera autónoma de problemas tipo examen [24] [06] [05]
- -Comprensión, aplicación y utilización de la documentación gráfica disponible en el aula virtual [T9] [O5]

Observaciones: debido a la utilización del modelo de docencia presencial adaptada, en la que se requiere por parte del alumnado el seguimiento de manera virtual o no presencial de parte de la docencia, requiere que dicho alumnado disponga de un ordenador personal o dispositivo similar con acceso a internet, cámara, sonido y micrófono.

Actividades formativas en créditos ECTS, su metodología de enseñanza-aprendizaje y su relación con las competencias que debe adquirir el estudiante

Actividades formativas	Horas presenciales	Horas de trabajo autónomo	Total horas	Relación con competencias
Clases teóricas o de problemas a grupo completo	50,00	0,00	50,0	[CB2], [O1], [24]
Clases prácticas en aula a grupo mediano o grupo completo	8,00	0,00	8,0	[T9], [O8], [CB2], [O1], [O6], [24]
Realización de seminarios u otras actividades complementarias a grupo completo o reducido	2,00	0,00	2,0	[T9], [CB2], [24]
Estudio/preparación de clases teóricas	0,00	66,00	66,0	[CB2], [O1], [O5], [24]
Estudio/preparación de clases prácticas	0,00	54,00	54,0	[T9], [O8], [CB2], [O1], [O5], [O6], [24]
Preparación de exámenes	0,00	15,00	15,0	[O8], [CB2], [O1], [O5], [O6], [24]
Realización de exámenes	6,00	0,00	6,0	[O8], [CB2], [O6], [24]
Asistencia a tutorías, presenciales y/o virtuales, a grupo reducido	2,00	0,00	2,0	[CB2], [24]

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 8 de 13

Prácticas de laboratorio o en sala de ordenadores a grupo reducido	22,00	0,00	22,0	[T9], [O8], [CB2], [O1], [O6], [24]
Total horas	90,00	135,00	225,00	
		Total ECTS	9,00	

8. Bibliografía / Recursos

Bibliografía Básica

Feodosiev V.I." Resistencia de Materiales". Ed. MIR, 1997

Gere J.." Timoshenko: Resistencia de Materiales". Ed. Thomson, 2008

Hibbeler, R. C. "Mechanics of materials". Ed. Prentice Hall, 1994

Tetmajer. Strength of materials. Ed. Dover books. 1963

Bibliografía Complementaria

Randy H. Shih, Introduction to Finite Element Analysis Using SolidWorks Simulation 2010, SDC, 2010.

Otros Recursos

Programa informático para el calculo de estructuras y componentes mecánicos por el método de elementos finitos \"Solid Works\".

Programa EXCEL, Ocatve o SCILAB para la programación y manipulación de matrices.

9. Sistema de evaluación y calificación

Descripción

A continuación se recogen las consideraciones más relevantes relacionadas con la evaluación de la asignatura que se rige por el Reglamento de Evaluación y Calificación de la ULL (BOC del 19 de enero de 2016). El sistema de evaluación y calificación de esta asignatura establece que tanto si se realiza la evaluación continua o la evaluación alternativa se considerará motivo de suspensión de la asignatura si los resultados numéricos de los problemas realizados no están en las unidades correspondientes y si las pruebas (examen final, prácticas o problemas de evaluación continua) entregadas no están correctamente presentadas refiriéndose a la limpieza y al orden de los desarrollos escritos. También será motivo de suspensión de los problemas en los que el alumnado haya cometido un error grave de concepto (Leyes de Newton, ecuaciones de equilibrio, relaciones cinemáticas, trigonometría, etc.)

A continuación se describen los aspectos relativos a las actividades que componen tanto la evaluación continua como la única:

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 9 de 13

EVALUACIÓN CONTINUA

Los tipos de pruebas serán los siguientes:

1) Realización de la prueba de desarrollo final (70%, 7 puntos)

La prueba de desarrollo final es un examen escrito que consiste en la resolución de problemas representativos y preguntas teóricas, alguna de ellas en inglés, del temario que se haya visto durante el curso. Esta prueba permite evaluar las competencias: [24] [O6] [T9]. Cada problema tendrá asociado al enunciado un tiempo máximo de realización, tras el cual el alumnado deberá de entregar. El alumnado deberá realizar correctamente el 30% de cada problema, en el caso de que esto no sea así el examen quedará suspendido (reprobado).

2) Realización de pruebas de ejecución de tareas simuladas (20%, 2 puntos)

Prueba tipo práctica: esta prueba consiste en la realización de al menos dos pruebas individuales sin ayuda del profesor, tipo examen, en el aula de informática o laboratorio computacional durante el curso. La profesora entregará al alumnado el enunciado de la práctica en papel. En el enunciado se indicará el modelo y el tipo de análisis a realizar. También habrá varias cuestiones cortas que el alumnado deberá de contestar por escrito. El alumnado deberá de realizar un informe de los resultados obtenidos durante el examen y adjuntarlo a una tarea específica habilitada exclusivamente el día de la prueba. Se tendrá que obtener una calificación de cinco sobre diez para aprobar el examen de las prácticas. El alumnado que supere estás pruebas durante el curso no tendrá que presentarse a un examen de prácticas el día de la convocatoria.

3) Informe de memoria de prácticas (10%, 1 puntos)

Se evaluarán los informes entregados para cada una de las prácticas realizadas en el laboratorio computacional. Las prácticas consistirán en la resolución de unos o varios modelos que el alumnado tendrá que diseñar y analizar, (como se indicó en el apartado 7 de metodología).

El conjunto de competencias evaluables serán: [O1][O6][O8]. El alumnado deberá de haber entregado todos los informes y tener correcto al menos el 80% del contenido presentado para que se le considere aprobado.

El alumnado que durante el curso no haya superado las pruebas de ejecución de las tareas simulada, tendrá que presentarse a un examen final de prácticas el día de la convocatoria.

La nota de las prácticas se mantendrá durante un curso académico.

La evaluación continua permite al alumnado presentarse durante el curso a las pruebas de laboratorio. Estas pruebas son eliminatorias de la parte práctica de la asignatura y el alumnado sólo tendrá que presentarse a la prueba de desarrollo final el día de la convocatoria siempre y cuando haya superado dichas pruebas de laboratorio.

Las personas que no hayan podido realizar la evaluación continua podrán optar a la evaluación alternativa para superar la asignatura:

EVALUACIÓN ALTERNATIVA

- 1)- La evaluación alternativa consistirá en un examen escrito que consiste en la resolución de problemas representativos y preguntas teóricas, alguna de ellas en inglés, del temario que se haya visto durante el curso. Esta prueba permite evaluar las competencias: [24] [O6] [T9]. Cada problema tendrá asociado al enunciado un tiempo máximo de realización, tras el cual el alumnado deberá de entregar. El alumnado deberá realizar correctamente el 30% de cada problema, en el caso de que esto no sea así el examen quedará suspendido (reprobado). Este examen supondrá el 70% de la nota, para aprobar esta parte el alumnado deberá obtener una calificación de 5 sobre 10. [24] [O6]
- 2)- La prueba de laboratorio constará de al menos del estudio de dos modelos, esta parte supondrá el 20% de la nota, para aprobar esta parte el estudiante deberá obtener una calificación de 5 sobre 10.[O1][O6][O8]. Esta prueba se realizará el mismo día que el examen de convocatoria (en el turno de tarde si la prueba de desarrollo se realiza en el turno de mañana).
- 3) El alumno deberá de entregar los informes que suponen el 10% de la nota final y deberá de tener al menos el 80% correcto para aprobarlos.

Los informes de las prácticas forman parte del trabajo que el alumnado debe de presentar en ambas modalidades para superar la asignatura, no son una tarea de evaluación continua.

El alumnado dispone hasta el día del examen para entregar los informes de prácticas y podrá hacerlo en cada una de las

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 10 de 13

convocatorias del presente curso.

Es condición indispensable que el alumno haya aprobado el examen de teoría y prácticas para que se le pondere la nota de los informes de prácticas.

En ambas modalidades de evaluación el alumnado deberá de obtener una calificación con una nota mínima de 5 sobre 10 para aprobar. Es decir, el alumno/a que no supere, con los criterios establecidos, los informes de prácticas, las pruebas de laboratorio y el examen de convocatoria o desarrollo no podrá aprobar la asignatura aunque haya aprobado alguna de las tres partes.

Estrategia Evaluativa

Tipo de prueba	Competencias	Criterios	Ponderación
Pruebas de desarrollo	[CB2], [O6], [24]	Dominio de los conocimientos Teóricos y operativos de la materia.	70,00 %
Informes memorias de prácticas	[CB2], [O8], [O6], [O1], [T9], [24]	Comprensión de los enunciados, dominio del programa. Capacidad para analzar e interpretar los resultados.	20,00 %
Pruebas de ejecuciones de tareas reales y/o simuladas	[CB2], [O6], [O5], [T9], [24]	Capacidad para entender y resolver problemas tipo.	10,00 %

10. Resultados de Aprendizaje

El alumnado habrá aprendido a resolver de forma sistemática los problemas y cuestiones relacionados con la asignatura permitiéndole relacionar conceptos y desarrollar criterio profesional para el análisis de las soluciones obtenidas. Algunos resultados de aprendizaje respecto de la materia son:

- Saber calcular las tensiones principales máxima y mínimas a partir de los ejes principales.[24][06]
- Analizar los estados de tensión y deformación plana y saber calcular las tensiones en planos de orientación arbitraria.[24][O6]
- Saber aplicar el método matricial para calcular estructuras de vigas planas y tridimensionales.[24][06]
- Calcular las tensiones de una viga gruesa bajo esfuerzos de flexión y tracción acoplados.[24][06]
- Saber calcular los estados de tensión en las paredes de los recipientes de presión cilíndricos.[24][O6]
- Capacidad para dimensionar recipientes de presión cilíndricos. [24][O6]
- Saber calcular las tensiones de un disco que giran a gran velocidad.[24][O6]
- Capacidad para calcular las tensiones en las bóvedas simétricas por la teoría membranal.[24][O6]
- Capacidad de calcular las tensiones de una placa circular bajo la acción de cargas exteriores que producen flexión.[24][O6]
- Saber calcular los estados de tensión de cáscaras bajo la acción de cargas axisimétricas.[24][06]
- Saber utilizar un programa CAD para el diseño y el cáculo computacional [24][O5][O8]
- Saber simular los estados de tensión y deformación de estructuras planas contruídas por barras y vigas y saber interpretar los resultados [24][O5][O8]
- Saber redactar informes de cáculo computacional[24][O1][O5]
- Saber comprobar los resultados calculados por un programa CAD con los obtenidos por e método matricial para el cálculo de estructuras.[24][05]
- Conocer los términos más comunes en ingles [T9]

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 11 de 13

11. Cronograma / calendario de la asignatura

Descripción

- -La asignatura se organiza de forma que en el primer tema el alumnado se introduzca en los conceptos del equilibrio de tensiones en un punto.
- -Los demás temas propuestos son aplicaciones específicas de este criterio general a configuraciones geométricas representativas de distintos componentes de máquinas, recipientes y estructuras soporte.
- -Las prácticas de computacionales introducirá al alumnado en el uso de las herramientas CAD para el cálculo por el método de los elementos finitos de estructuras planas de vigas y barras.

	Primer cuatrimestre						
Semana	Temas	Actividades de enseñanza aprendizaje	Horas de trabajo presencial	Horas de trabajo autónomo	Total		
Semana 1:	Tema 1	Problemas tipo: cálculo de las tensiones principales máxima y mínimas a partir de los ejes principales e un cuerpo elástico	4.00	9.00	13.00		
Semana 2:	Tema 1	Problemas tipo: Analisis de los estados de tensión y deformación plana y saber calcular las tensiones en planos de orientación arbitraria. y resolución de problemas adicionales por el alumno.	4.00	9.00	13.00		
Semana 3:	Tema 2	Problemas tipo: Aplicación del método matricial para calcular estructuras de vigas planas y tridimensionales. Práctica 1	6.00	9.00	15.00		
Semana 4:	Tema 2	Problemas tipo: Aplicación del método matricial para calcular estructuras de vigas planas y tridimensionales. Exlicación del programa excel. Práctica 1:	6.00	9.00	15.00		
Semana 5:	Tema 3	Problemas tipo: Calcular las tensiones de una viga gruesa. Práctica 2	6.00	9.00	15.00		
Semana 6:	Tema 3	Problemas tipo: Calcular las tensiones de una viga gruesa bajo esfuerzos de flexión. Práctica 2 1º Prueba de evaluación en el laboratorio computacional	6.00	9.00	15.00		

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 12 de 13

Semana 7:	Tema 3	Problemas tipo: Calcular las tensiones de una viga gruesa bajo esfuerzos de flexión y tracción acoplados. Práctica 3	6.00	9.00	15.00
Semana 8:	Tema 4	Problemas tipo: calcular los estados de tensión en las paredes de los recipientes de presión cilíndrico. Práctica 3	6.00	9.00	15.00
Semana 9:	Tema 4	Problemas tipo: Saber calcular las tensiones de un disco que giran a gran velocidad. Práctica 4.	6.00	9.00	15.00
Semana 10:	Tema 5	Problemas tipo: Capacidad para calcular las tensiones en las bóvedas simétricas por la teoría membranal Práctica 4.	6.00	9.00	15.00
Semana 11:	Tema 5	Problemas tipo: Capacidad para calcular las tensiones en las bóvedas axisimétricas por la teoría membranal Práctica 5.	6.00	9.00	15.00
Semana 12:	Tema 6	Problemas tipo: Capacidad de calcular las tensiones de una placa circular bajo la acción de cargas exteriores que producen flexión Práctica 5	6.00	9.00	15.00
Semana 13:	Tema 6	Problemas tipo: Capacidad de calcular los desplazamientos y deformaciones de una placa circular bajo la acción de cargas exteriores que producen flexión. Práctica 6 2º Prueba de evaluación en el laboratorio computacional	6.00	9.00	15.00
Semana 14:	Tema 7	Problemas tipo: calcular los estados de tensión de cáscaras bajo la acción de cargas axisimétricas. Práctica 6	6.00	3.00	9.00
Semana 15:	Tema 7	Problemas tipo examen	4.00	3.00	7.00
Semana 16 a 18:	Evaluación	Trabajo autonomo del alumno, tutorias y examen	6.00	12.00	18.00
		Total	90.00	135.00	225.00

Última modificación: **24-06-2021** Aprobación: **07-07-2021** Página 13 de 13