Técnicas de Obtención y Caracterización de Materiales
(Curso Académico 2019 - 2020)
Mostrar Todo


Nota informativa: Atendiendo a la normativa de Protección de Datos y propiedad intelectual en la que se limita la publicación de imágenes de terceras personas sin su consentimiento, aquellos que difundan grabaciones de las sesiones de clase sin previo consentimiento de las personas implicadas, serán responsables ante la ley del uso prohibido de las citadas grabaciones.



1. Datos descriptivos de la asignatura
  • Código: 279190911
  • Centro: Facultad de Ciencias
  • Lugar de impartición: Facultad de Ciencias
  • Titulación: Grado en Física
  • Plan de Estudios: 2009 (publicado en 25-11-2009)
  • Rama de conocimiento: Ciencias
  • Itinerario/Intensificación:
  • Departamento/s:
  • Área/s de conocimiento:
    • Física Aplicada
  • Curso: 4
  • Carácter: Optativo
  • Duración: Segundo cuatrimestre
  • Créditos ECTS: 6,0
  • Modalidad de impartición: Presencial
  • Horario: Ver horario
  • Dirección web de la asignatura: Ver web de la asignatura
  • Idioma: Castellano e Inglés (3 ECTS en Inglés)
2. Requisitos para cursar la asignatura
Necesario tener aprobado al menos 90 créditos.
3. Profesorado que imparte la asignatura

Profesor/a Coordinador/a: MANUEL EULALIO TORRES BETANCORT

General:
Nombre:
MANUEL EULALIO
Apellido:
TORRES BETANCORT
Departamento:
Física
Área de conocimiento:
Física Aplicada
Grupo:
GTE y PE101
Contacto:
Teléfono 1:
922318305
Teléfono 2:
922318238
Correo electrónico:
metorres@ull.es
Correo alternativo:
Tutorías primer cuatrimestre:
DesdeHastaDíaHora incialHora finalLocalizaciónPlantaDespacho
Todo el cuatrimestre Lunes 13:00 14:00 Edificio de Física y Matemáticas - AN.2B 29
Todo el cuatrimestre Martes 13:00 14:00 Edificio de Física y Matemáticas - AN.2B 29
Todo el cuatrimestre Miércoles 16:00 18:00 Edificio de Física y Matemáticas - AN.2B 29
Todo el cuatrimestre Jueves 16:00 18:00 Edificio de Física y Matemáticas - AN.2B 29
Observaciones:
Tutorías segundo cuatrimestre:
DesdeHastaDíaHora incialHora finalLocalizaciónPlantaDespacho
Todo el cuatrimestre Lunes 16:00 18:00 Edificio de Física y Matemáticas - AN.2B 29
Todo el cuatrimestre Martes 16:00 18:00 Edificio de Física y Matemáticas - AN.2B 29
Todo el cuatrimestre Jueves 16:00 18:00 Edificio de Física y Matemáticas - AN.2B 29
Observaciones:
General:
Nombre:
FRANCISCO JAVIER
Apellido:
DEL CASTILLO VARGAS
Departamento:
Física
Área de conocimiento:
Física Aplicada
Grupo:
GTE y PE101
Contacto:
Teléfono 1:
922318302
Teléfono 2:
Correo electrónico:
fjvargas@ull.es
Correo alternativo:
fjvargas@ull..edu.es
Tutorías primer cuatrimestre:
DesdeHastaDíaHora incialHora finalLocalizaciónPlantaDespacho
02-09-2019 31-01-2020 Martes 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab, Nanomateriales
02-09-2019 31-01-2020 Miércoles 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab Nanomateriales
02-09-2019 31-01-2020 Jueves 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab. Nanomateriales
Observaciones: Las tutorías de los miércoles de 12:00-14:00, serán virtuales. Para llevar a cabo la tutoría online, usaremos la herramienta Hangouts con el usuario fjvargas@ull..edu.es
Tutorías segundo cuatrimestre:
DesdeHastaDíaHora incialHora finalLocalizaciónPlantaDespacho
03-02-2020 31-07-2020 Martes 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab, Nanomateriales
03-02-2020 31-07-2020 Miércoles 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab Nanomateriales
03-02-2020 31-07-2020 Jueves 12:00 14:00 Edificio de Física y Matemáticas - AN.2B Lab. Nanomateriales
Observaciones: Las tutorías de los miércoles de 12:00-14:00, serán virtuales. Para llevar a cabo la tutoría online, usaremos la herramienta Hangouts con el usuario fjvargas@ull..edu.es
4. Contextualización de la asignatura en el plan de estudio
  • Bloque formativo al que pertenece la asignatura: Física Optativa
  • Perfil profesional:
5. Competencias

Competencias Generales

  • CG1 - Conocer el trabajo en el laboratorio, el uso de la instrumentación, tecnología y métodos experimentales más utilizados, adquiriendo la habilidad y experiencia para realizar experimentos de forma independiente. Ello le permitirá ser capaz de observar, catalogar y modelizar los fenómenos de la naturaleza.
  • CG3 - Desarrollar una clara percepción de situaciones aparentemente diferentes pero que muestran evidentes analogías físicas, lo que permite la aplicación de soluciones conocidas a nuevos problemas. Para ello es importante que el alumnado, además de dominar las teorías físicas, adquiera un buen conocimiento y dominio de los métodos matemáticos y numéricos mas comúnmente utilizados.
  • CG4 - Desarrollar la habilidad de identificar los elementos esenciales de un proceso o una situación compleja que le permita construir un modelo simplificado que describa, con la aproximación necesaria, el objeto de estudio y permita realizar predicciones sobre su evolución futura. Así mismo, debe ser capaz de comprobar la validez del modelo introduciendo las modificaciones necesarias cuando se observen discrepancias entre las predicciones y las observaciones y/o los resultados experimentales.
  • CG5 - Conocer las posibilidades de aplicar la Física en el mundo laboral, docente y de investigación, desarrollo tecnológico e innovación y en las actividades de emprendeduría
  • CG6 - Saber organizar y planificar el tiempo de estudio y de trabajo, tanto individual como en grupo; ello les llevará a aprender a trabajar en equipo y a apreciar el valor añadido que esto supone.
  • CG7 - Ser capaz de participar en debates científicos y de comunicar tanto de forma oral como escrita a un público especializado o no cuestiones relacionadas con la Ciencia y la Física. También será capaz de utilizar en forma hablada y escrita otro idioma, relevante en la Física y la Ciencia en general, como es el inglés.
  • CG8 - Poseer la base necesaria para emprender estudios posteriores con un alto grado de autonomía, tanto desde la formación científica, (realizando un master y/o doctorado), como desde la actividad profesional.

Competencias Básicas

  • CB2 - Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio
  • CB3 - Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética
  • CB4 - Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado
  • CB5 - Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía

Competencias Especificas

  • CE4 - Conocer los hitos más importantes de la historia del pensamiento científico y de la Física en particular.
  • CE5 - Desarrollar una visión panorámica de la Física actual y sus aplicaciones
  • CE6 - Tener un buen conocimiento sobre la situación en el momento presente en, por lo menos, una de las especialidades actuales de la física.
  • CE7 - Comprobar la interrelación entre las diferentes disciplinas científicas
  • CE11 - Adquirir destreza en la modelización matemática de fenómenos físicos.
  • CE12 - Observar fenómenos naturales y realizar experimentos científicos.
  • CE13 - Registrar de forma sistemática y fiable la información científica.
  • CE14 - Analizar, sintetizar, evaluar y describir información y datos científicos
  • CE15 - Medir magnitudes esenciales en experimentos científicos.
  • CE16 - Evaluar y analizar cuantitativamente los resultados experimentales
  • CE17 - Realizar informes sintetizando los resultados de experimentos científicos y sus conclusiones más importantes.
  • CE18 - Utilizar la instrumentación científica actual y conocer sus tecnologías innovadoras.
  • CE19 - Desarrollar la “intuición” física.
  • CE20 - Utilizar herramientas informáticas en el contexto de la matemática aplicada.
  • CE23 - Ser capaz de evaluar claramente los órdenes de magnitud, así como de desarrollar una clara percepción de las situaciones que son físicamente diferentes, pero que muestran analogías, permitiendo el uso de soluciones conocidas a nuevos problemas.
  • CE24 - Afrontar problemas y generar nuevas ideas que puedan solucionarlos
  • CE25 - Ser capaces de realizar experimentos de forma independiente.
  • CE26 - Dominar la expresión oral y escrita en lengua española, y también en lengua inglesa, dirigida tanto a un público especializado como al público en general.
  • CE27 - Haber desarrollado habilidades para la popularización de las cuestiones concernientes a la cultura científica y de aspectos aplicados a la física clásica y moderna.
  • CE28 - Adquirir hábitos de comportamiento ético en laboratorios científicos y en aulas universitarias.
  • CE29 - Organizar y planificar el tiempo de estudio y trabajo, tanto individual como en grupo.
  • CE30 - Saber discutir conceptos, problemas y experimentos defendiendo con solidez y rigor científico sus argumentos.
  • CE31 - Saber escuchar y valorar los argumentos de otros compañeros.
  • CE32 - Saber trabajar e integrarse en un equipo científico multidisciplinar
  • CE33 - Ser capaz de identificar lo esencial de un proceso / situación y establecer un modelo de trabajo del mismo.
6. Contenidos de la asignatura

Contenidos teóricos y prácticos de la asignatura

- Profesor/a: Fco. Javier del Castillo Vargas y Manuel Eulalio Torres Betancort
- Temas (epígrafes):

1.- TÉCNICAS DE OBTENCIÓN DE MATERIALES. Termodinámica y cinética del crecimiento. Técnicas de crecimiento cristalino: solución, fundido (Czochralski) y Gel.
2.- ANÁLISIS TÉRMICOS. Análisis termogravimétrico. Análisis térmico diferencial. Calorimetría de barrido diferencial. Termodilatometría y análisis termomecánico.
3.- ESPECTROSCOPÍAS INFRARROJA Y RAMAN. Frecuencias vibracionales. Modos normales vibracionales. Espectros infrarrojos y raman. Análisis comparativo. Aplicación a la caracterización de estructuras moleculares.
4.- ESPECTROSCOPÍA DE RESONANCIA MAGNÉTICA NUCLEAR. Principios generales de la resonancia magnética nuclear. Desplazamientos químicos. Acoplamiento espín-espín. Aplicación al análisis de estructuras moleculares.
5.- ESPECTROSCOPÍA DE ELECTRONES. Espectroscopía fotoelectrónica de rayos X. Espectroscopía Auger. Aplicaciones a la caracterización de superficies.
6.- ESPECTROSCOPÍA DIELÉCTRICA. Comportamiento de los dieléctricos en campos eléctricos variables con el tiempo. Fenómenos de relajación dieléctrica. Fenómenos de resonancia. Medidas de las características dieléctricas.
7.- PRÁCTICAS DE LABORATORIO. Obtención de materiales. Técnicas sol-gel, solución y fundido. Caracterización de materiales. Análisis térmicos. Espectroscopías de resonancia magnética nuclear e infrarroja. Espectroscopía fotoelectrónica de rayos-X. Espectroscopía dieléctrica.

Actividades a desarrollar en otro idioma

Los alumnos realizarán un trabajo de parte de uno de los temas de la asignatura. Deberán realizar una exposición oral y escrita, en la que utilicen el inglés en al menos, una de ellas.
7. Metodología y volumen de trabajo del estudiante

Descripción

La metodología de este curso se basará en la enseñanza expositiva, estructurándose en:
-Clases teóricas donde el profesorado expone los conceptos teóricos de la asignatura, utilizando apuntes previamente facilitados al alumnado a través del aula virtual.
-Clases de prácticas y de poblemas donde se estudiarán ejemplos prácticos de los fenómenos estudiados.
Se espera que tanto las clases teóricas como las prácticas sean participativas.

Además se realizarán seminarios en grupos reducidos en los que se trabajará sobre el material propuesto para la evaluación continua (realización de prácticas en grupos, actividades virtuales individuales a través del campus virtual de la asignatura y exposiciones en grupo de trabajos propuestos por el profesorado y que serán el material utilizado para la evaluación continua).

Se facilitarán tutorías individuales presenciales o virtuales a través del portal de la asignatura

Actividades formativas en créditos ECTS, su metodología de enseñanza-aprendizaje y su relación con las competencias que debe adquirir el estudiante

Actividades formativas Horas presenciales Horas de trabajo autónomo Total horas Relación con competencias
Clases teóricas 3,00 0,00 3,0 [CG1], [CG3], [CG4], [CG5], [CG6], [CG7], [CG8], [CB2], [CE4], [CE5], [CE6], [CE7], [CE11], [CE12], [CE13], [CE14], [CE15], [CE16], [CE17], [CE18], [CE19], [CE20], [CE23], [CE24], [CE25], [CE26], [CE27], [CE28], [CE29], [CE30], [CE31], [CE32], [CE33]
Clases prácticas (aula / sala de demostraciones / prácticas laboratorio) 54,00 0,00 54,0 [CG1], [CG3], [CG4], [CG5], [CG6], [CG7], [CG8], [CB2], [CB3], [CB4], [CB5], [CE4], [CE5], [CE6], [CE7], [CE11], [CE12], [CE13], [CE14], [CE15], [CE16], [CE17], [CE18], [CE19], [CE20], [CE23], [CE24], [CE25], [CE26], [CE27], [CE28], [CE29], [CE30], [CE31], [CE32], [CE33]
Realización de exámenes 3,00 0,00 3,0 [CG1], [CG3], [CG4], [CG5], [CG6], [CG7], [CG8], [CB2], [CE4], [CE5], [CE6], [CE7], [CE11], [CE12], [CE13], [CE14], [CE15], [CE16], [CE17], [CE18], [CE19], [CE20], [CE23], [CE24], [CE25], [CE26], [CE27], [CE28], [CE29], [CE30], [CE31], [CE32], [CE33]
Estudio y trabajo autónomo en todas las actividades 0,00 90,00 90,0 [CG1], [CG3], [CG4], [CG5], [CG6], [CG7], [CG8], [CB2], [CE4], [CE5], [CE6], [CE7], [CE11], [CE12], [CE13], [CE14], [CE15], [CE16], [CE17], [CE18], [CE19], [CE20], [CE23], [CE24], [CE25], [CE26], [CE27], [CE28], [CE29], [CE30], [CE31], [CE32], [CE33]
Total horas
Total ECTS
8. Bibliografía / Recursos

Bibliografía básica

- Rubinson K.A., Rubinson J.F., \"Análisis Instrumental\", Ed. Pearson Educación, 2000
.

- Douglas A. Skoog, F. James Holler, Timothy A. Nieman. \"Principios de análisis instrumental\", 5ª edición. McGraw-Hill/Interamericana de España, 2001
.
 

- Nakamoto K., \"Infrared and Raman Spectra of Inorganic and Coordination Compounds\" Ed. John Wiley & Sons, New York, 1997.

- Chi Kao K., \"Dielectric Phenomena in Solids\", Ed. Elsevier Academic Press, 2004.

Bibliografía complementaria

- Puértolas J.A., Ríos R., Castro M., Casals J.M., \"Tecnología de Materiales\", Editorial Síntesis, 2009.
 

- Juan Antonio Conesa Ferrer, \"Curso básico de análisis térmico\", Editorial Club Universitario, 2000.

- Pretsch E., Clerc T., Seibl J., Simon W., \"Tablas para la Elucidación Estructural de Compuestos Orgánicos por Métodos Espectroscópicos\", Ed.
Alambra, 1988.

-
Albella Martín J.M., Martínez Duart J.M.\"Física de dieléctricos\". Marcombo S.A. 1984
.

Xu Y., \"Ferroelectric Materials and Their Applications\", Ed. Elsevier Science Publishers B.V., 1991.

Otros recursos

www.spectroscopynow.com

9. Sistema de evaluación y calificación

Descripción

 En esta asignatura, la evaluación se llevará a cabo de forma ponderada entre la evaluación continua (que será obligatoria) a lo largo del curso, realizada en los seminarios tutorizados, y la prueba final de rendimiento en las convocatorias oficiales, que se dividirá en dos partes: resolución de problemas concretos (60-65%) y aplicaciones de la teoría (40-35%). Se establecerá un valor mínimo de 1/3 de la calificación máxima en la puntuación del examen final para considerar apta la calificación.
Así pues, suponiendo c la calificación de la evaluación continua (en escala de 0-10) y z la del examen global (en escala 0-10), la calificación total será p=0.6·c+z(10-0.6·c)/10

Para aplicar la formula anterior se requiere que en el examen global se supere 1/3 de la calificación máxima (z>=10/3) y que se apruebe la evaluación continua (c>=5). Si no se supera la evaluación continua, la evaluación del alumno/a se basará en la nota del examen global (z).

La evaluación continua de los alumnos/as se efectuará en base a las siguientes actividades evaluables a lo largo del curso: realización de trabajos a lo largo del curso y participación activa del alumno en las clases teóricas y prácticas.

*ACLARACIÓN DE EVALUACIÓN CONTINUA: Se valorará la realización de prácticas en grupos, actividades virtuales individuales y exposiciones en grupo que serán el material utilizado para la evaluación continua.

Estrategia Evaluativa

Tipo de prueba Competencias Criterios Ponderación
Pruebas de desarrollo [CG1], [CG3], [CG4], [CG5], [CG6], [CG8], [CB2], [CB3], [CB4], [CB5], [CE4], [CE5], [CE6], [CE7], [CE11], [CE14], [CE16], [CE19], [CE23], [CE24], [CE26], [CE27], [CE29], [CE30], [CE33] Realización de prueba de desarrollo, una vez abordados todos los contenidos de la asignatura. El peso de esta parte de la asignatura variará entre un 40-70% en función de la evaluación continua. 40,00 %
Trabajos y proyectos [CG1], [CG3], [CG4], [CG5], [CG6], [CG7], [CG8], [CB2], [CE4], [CE5], [CE6], [CE7], [CE11], [CE12], [CE13], [CE14], [CE15], [CE16], [CE17], [CE18], [CE19], [CE20], [CE23], [CE24], [CE25], [CE26], [CE27], [CE28], [CE29], [CE30], [CE31], [CE32], [CE33] Realización de prácticas de laboratorio (preparación y caracterización de materiales) y visita a laboratorios del SEGAI de la ULL, donde se realizarán medidas.
Realización de trabajo y exposición en grupo de una temática propuesta por el profesorado de la asignatura
El peso de esta parte de la asignatura variará entre un 30-60%. 
60,00 %
10. Resultados de Aprendizaje
Al terminar con éxito esta asignatura, los estudiantes serán capaces de:
1. Adquirir un conocimiento adecuado sobre la situación actual en el campo de la física de materiales y comprender y valorar la interrelación entre las diferentes disciplinas científicas
2. Planificar y realizar experimentos científicos de forma independiente, observando su naturaleza y registrando de forma sistemática y fiable la información científica asociada.
3. Analizar, sintetizar, evaluar y describir información y datos científicos obtenidos de los resultados experimentales.
4. Realizar informes científicos, sintetizando los resultados de experimentos y sus conclusiones más importantes.
5. Utilizar con destreza la instrumentación científica actual y conocer las tecnologías innovadoras.
6. Utilizar herramientas informáticas de la matemática aplicada para afrontar problemas y generar nuevas ideas que puedan solucionarlos.
7. Dominar la expresión oral y escrita en lengua española, y también en lengua inglesa, dirigida tanto a un público especializado como al público en general, para discutir conceptos, problemas y experimentos defendiendo con solidez y rigor científico sus argumentos.
8. Saber trabajar e integrarse en un equipo científico multidisciplinar, adquiriendo hábitos de comportamiento ético en laboratorios científicos y en aulas universitarias.
11. Cronograma / calendario de la asignatura

Descripción

[En las guías docentes la planificación temporal de la programación sólo tiene la intención de establecer unos referentes u orientaciones para presentar la materia atendiendo a unos criterios cronológicos, sin embargo son solamente a título estimativo, de modo que el profesorado puede modificar – si así lo demanda el desarrollo de la materia – dicha planificación temporal . Es obvio recordar que la flexibilidad en la programación tiene unos límites que son aquellos que plantean el desarrollo de materias universitarias que no están sometidas a procesos de adaptación del currículo].

Segundo cuatrimestre

Semana Temas Actividades de enseñanza aprendizaje Horas de trabajo presencial Horas de trabajo autónomo Total
Semana 1: Obtención de Materiales Clases Teóricas (10h) 10.00 14.00 24.00
Semana 2: Obtención de Materiales
Análisis Térmicos
Clases Prácticas (4h)
Clases Teóricas (3h) y Prácticas (3h)
10.00 16.00 26.00
Semana 3: Espectroscopias Infrarroja, Raman y Visible Clases Teóricas (7h) y Prácticas (3h) 10.00 16.00 26.00
Semana 4: Espectroscopia de Resonancia Magnética Nuclear Clases Teóricas (7h) y Prácticas (3h) 10.00 16.00 26.00
Semana 5: Espectroscopía Dieléctrica Clases Teóricas (6h) y Prácticas (4h) 10.00 15.00 25.00
Semana 6: Espectroscopía Dieléctrica Clases Teóricas (7h)  7.00 7.00 14.00
Semana 16 a 18: Evaluación Evaluación y trabajo autónomo del alumno para la preparación de la evaluación. 3.00 6.00 9.00
Total 60.00 90.00 150.00
Fecha de última modificación: 28-04-2020
Fecha de aprobación: 22-07-2019

1. Datos descriptivos de la asignatura
  • Código: 279190911
  • Titulación: Grado en Física
  • Curso: 4
  • Duración: Segundo cuatrimestre
3. Tutorías no presenciales
MANUEL EULALIO TORRES BETANCORT
General:
Nombre:
MANUEL EULALIO
Apellido:
TORRES BETANCORT
Departamento:
Física
Área de conocimiento:
Física Aplicada
Contacto:
Teléfono 1:
922318305
Teléfono 2:
922318238
Correo electrónico:
metorres@ull.es
Correo alternativo:
Tutorías primer cuatrimestre:
DesdeHastaDíaHora inicialHora finalTipo de tutoríaMedio o canal de comunicación
Observaciones:
Tutorías segundo cuatrimestre:
DesdeHastaDíaHora inicialHora finalTipo de tutoríaMedio o canal de comunicación
Todo el cuatrimestre Lunes 16:00 18:00 virtual correo electrónico
Todo el cuatrimestre Martes 16:00 18:00 virtual correo electrónico
Todo el cuatrimestre Jueves 16:00 18:00 virtual correo electrónico
Observaciones:

FRANCISCO JAVIER DEL CASTILLO VARGAS
General:
Nombre:
FRANCISCO JAVIER
Apellido:
DEL CASTILLO VARGAS
Departamento:
Física
Área de conocimiento:
Física Aplicada
Contacto:
Teléfono 1:
922318302
Teléfono 2:
Correo electrónico:
fjvargas@ull.es
Correo alternativo:
fjvargas@ull..edu.es
Tutorías primer cuatrimestre:
DesdeHastaDíaHora inicialHora finalTipo de tutoríaMedio o canal de comunicación
Observaciones:
Tutorías segundo cuatrimestre:
DesdeHastaDíaHora inicialHora finalTipo de tutoríaMedio o canal de comunicación
27-04-2020 15-07-2020 Lunes 12:00 13:30 ONLINE Correo electrónico o Video conferencia (previo cita a través de mail)
27-04-2020 15-07-2020 Martes 12:00 13:30 ONLINE Correo electrónico o Video conferencia (previo cita a través de mail)
27-04-2020 15-07-2020 Miércoles 12:00 13:30 ONLINE Correo electrónico o Video conferencia (previo cita a través de mail)
27-04-2020 15-07-2020 Jueves 12:00 13:30 ONLINE Correo electrónico o Video conferencia (previo cita a través de mail)
Observaciones:


7. Metodología no presencial

La asignatura se desarrolla a través del Campus Virtual de la ULL, haciendo uso de las diversas herramientas que posibilita dicho medio, combinando actividades formativas sincrónicas (conexión en tiempo real profesor-estudiante) y de carácter interactivo con otras asíncronas.

Las actividades formativas que se desarrollan son las siguientes:

Actividades formativas no presenciales

Actividades formativas
Inclusión de documentación sobre cada tema (Equivalencia con GD: Estudio autónomo, preparación clases teóricas/prácticas, etc.)
Foros/debate (Equivalencia con GD: Participación activa y asistencia a clase)
Exposición de trabajos individuales/grupales mediante vídeos de los estudiantes (Equivalencia con GD: Realización de trabajos (individual/grupal))
Realización de pruebas evaluativas en línea (Equivalencia con GD: Exámenes, test, etc.)
Tutorías (Equivalencia con GD: Asistencia a Tutoría)

Comentarios adicionales

Dado el modifica introducido este curso en el Grado de Física, esta asignatura impartió sus contenidos teóricos durante las seis primeras semanas del cuatrimestre, por lo que al inicio del periodo del estado de alarma ya se había impartido la teoría de la asignatura. Resta realizar la presentación de los trabajos en grupo y la prueba evaluativa en línea
9. Sistema de evaluación y calificación no presencial

Las pruebas evaluativas a realizar y su ponderación en la calificación es la siguiente:

Estrategia Evaluativa

Tipo de prueba Ponderación
Pruebas objetivas 30,00 %
Informes/Memorias/Trabajos/Proyectos individuales o grupales 40,00 %
Entrega de ejercicios por tema 30,00 %
Total 100,0 %

Comentarios adicionales

El apartado "Informes/Memorias/Trabajos/Proyectos individuales o grupales" que pondera en un 40% del total, se subdivide en:

   20% trabajo escrito de cada uno de los grupos de alumnos (calificación común a los miembros del grupo)
   20% presentación del trabajo (calificación individual para cada uno de los miembros del grupo)

El apartado "Entrega de ejercicios por tema" , que pondera un 30%, corresponde a las tareas realizadas correspondientes a las visitas a los Laboratorios del Segai donde se usaron algunas de las técnicas vistas en las clases teóricas.

La "prueba objetiva" final, que pondera un 30% del total, deberá realizarse obligatoriamente y obtener una calificación igual o superior a 3.3 puntos, para poder optar a superar la asignatura.
 
Fecha de última modificación: 28-04-2020
Fecha de aprobación: 04-05-2020